
VAT-7750 智能化電壓電流溫度監控器

(—)	產品特色	. P.2
(_)	規格架構圖	P.3
(三)	監控軟體的使用方法	
	(1)通訊設定	P.4
	(2)量測作法	P.5~7
	(3)電壓/電流/溫度 監控設定方法	P.8~14
(四)	RTC 時間設定	P.15
(五)	讀取間隔設定	P.16
(<u>\\</u>)	數據曲線圖	P.19
(七)	內建 3 個 Input / 8 個 Output 應用方法 .	P.20
(八)	安裝尺寸及配件	P.21

(一) 產品特色:

- [1]. 利用 MCU 中的 ADC 功能, 自動計算出實際電壓 / 電流 /溫度值.
- [2]. 監控器可監控電壓為交流電(90V~500V)
- [3]. 監控器可監控電流為交流電,CT 比流器最小感應 20mA,最大電流 40A
- [4]. 具有一組 PT100 溫度監控(-100°C~ 350°C)
- [5]. 具有七段顯示器面板, 可呈現目前電壓 / 電流 / 溫度值
- [6]. 配備標準監控軟體, 可方便地做單機管理
- [7]. 內置電池, 對時鐘及紀錄數據進行備份
- [8]. 內置蜂鳴器, 當電壓 / 電流 / 溫度值異常時產生聲音,以告知客戶監控器偵測到異常

(二) 規格架構圖

(三) 監控軟體的使用方法

(1)通訊設定

透過 RS232 轉 USB 線材將電腦主機與監控器連接起來,在通訊設定點選對應的 COM PORT 即可通訊.

(2)量測作法

量測電壓的作法

步驟一:將線材一端接至本公司偵測器端子台上,另一端並聯至欲監控電壓的元件上.

步驟二:請進入顯示畫面,如下圖所示,可觀查即時之監控結果,此頁面僅供觀察即時之監控結果,無法輸入數值,若需輸入數值,請參閱第7,8,9頁之設定方法.

量測電流的作法

步驟一:將扣式比流器扣住欲量測元件之線材上.

步驟二:請進入顯示畫面,如下圖所示,即可觀查目前之監控結果,此頁面僅供觀察目前之監控結果,無法輸入數值,若需輸入數值,請參閱第7,8,10頁之設定方法.

量測溫度的作法

步驟一:將 PT100 溫度感測器固定在欲量測溫度的物件上.

步驟二:請進入顯示畫面,如下圖所示,即可觀查目前之監控結果,此頁面僅供觀察即時之監控結果,無法輸入數值,若需要輸入數值,若需輸入數值,請參閱第7,8,11頁之設定方法..

(3)電壓/電流/溫度 監控設定方法

1.進入工程模式(密碼:mch123),在設定頁面右下角會出現轉換表格設定,請點擊進入轉換表格設定頁面,如下圖所示,電壓可設定高電壓與低電壓的警報值,電流可設定高電流警報值,溫度可設定高溫與低溫的警報值.

此頁紅色框線內的數值, 僅做為顯示用, 無法直接輸入. 請參閱下頁之數值輸入 設定方法.

有關電壓/電流/溫度的 ADC 對應數值, 請參閱下頁說明:

電壓與 ADC 對應數值:

電壓轉換表

Voltage 電壓	ADC 值
AC110V	819
AC220V	1638
AC440V	3277
AC550V	4095

電壓轉換表公式:X 代表 Voltage, Y 代表 ADC 值

範例:如果要偵測的高電壓是 AC240V, 則 ADC 的轉換值 Y 為 1787

$$\frac{240 \text{VAC}}{X} = \frac{550 \text{VAC}}{4095}$$
 \Rightarrow $X = 1786.9$

輸入後請記得存檔, 即可返回以下頁面, 檢查設定值狀況是否正確.

電流與 ADC 對應數值:

電流轉換	表			
Current電流	ADC值	Current電流	ADC值	電流轉換表公式 x代表Current y代表ADC值
0	0	5.5	465	900
0.5	44	6	503	$y = -0.2604x^2 + 45.679x - 48.75$
1	88	6.5	546	700
1.5	127	7	583	600
2	171	7.5	618	
2.5	212	8	650	400
3	256	8.5	688	200
3.5	296	9	720	多項式
4	339	9.5	759	0
4.5	381	10	797	-100 1 3 5 7 9 11 13 15 17 19 21
5	423			

輸入後請記得存檔, 即可返回以下頁面, 檢查設定值狀況是否正確.

外部量測溫度與 ADC 對應數值:

	PT100 温度轉換表																	
項次	Temp.	ADC	Į	項次	Temp.	ADC		項次	Temp.	ADC		項次	Temp.	ADC		項次	Temp.	ADC
1	-100°C	287		12	10°C	1305		22	110℃	2189		32	210℃	3032	1	42	310℃	3830
2	-90°C	381		13	20°C	1393		23	120℃	2272		33	220℃	3114		43	320℃	3913
3	-80°C	475		14	30°C	1483		24	130℃	2358		34	230℃	3197		44	330℃	3990
4	-70°C	569		15	40°C	1573		25	140°C	2443		35	240°C	3278		45	340℃	4073
5	-60°C	663		16	50°C	1662		26	150℃	2529		36	250℃	3359		46	350℃	4095
6	-50°C	755		17	60°C	1749		27	160℃	2615		37	260°C	3430		47	360℃	
7	-40°C	847		18	70°C	1839		28	170℃	2700		38	270℃	3510		48	370℃	
8	-30°C	941		19	80°C	1924		29	180℃	2784		39	280℃	3595		49	380℃	
9	-20°C	1031		20	90°C	2014		30	190℃	2866		40	290℃	3670		50	390℃	
10	-10°C	1123		21	100℃	2103		31	200°C	2950		41	300℃	3757	,	51	400℃	
11	0°C	1214																

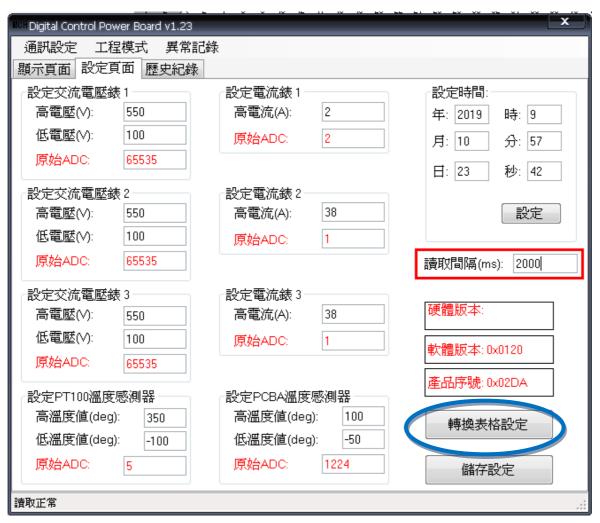
輸入後請記得存檔,即可返回以下頁面,檢查設定值狀況是否正確.

PCBA(電路板)溫度與ADC對應數值:

РСВА	溫度轉換表	Ę.				
項次	Temp.	ADC值	項次	Temp.	ADC值	
1	-50°C	1990	9	30°C	1241	
2	-40°C	1898	10	40°C	1145	
3	-30°C	1806	11	50°C	1048	
4	-20°C	1714	12	60°C	950	
5	-10°C	1620	13	70°C	852	
6	0°C	1527	14	80°C	753	
7	10°C	1432	15	90°C	653	
8	20°C	1337	16	100°C	553	

輸入後請記得存檔, 即可返回以下頁面, 檢查設定值狀況是否正確.

- 2.若只勾選 Monitor Voltage1 而 Monitor Voltage2、Monitor Voltage3 不勾,監控器將只對第一組電壓電流表進行監控,當以下任何一種異常情況發生時蜂鳴器會發出「嗶—嗶—」聲音.
- (a) 第一組電壓表無輸入電壓
- (b) 第一組電壓表輸入的電壓高於高電壓警報值或低於低電壓警報值
- (c) 第一組電壓表輸入的電壓正常,但第一組電流錶感應的電流超出高電流警報值
- (d) PT100 溫度感測器偵測的溫度高於高溫度警報值或低於低溫度警報值
- 3. 若只勾選 Monitor Voltage1 而 Monitor Voltage2、Monitor Voltage3 不勾,七段顯示器面板只會顯示第一組電壓電流錶的數值.


(四) RTC 時間設定

- 1.進入"工程模式->設定頁面->轉換表格設定",按下存檔即把 RTC 設為目前電腦時間.
- 2. 本產品另有異常記錄頁面,方便使用者了解及分析整體運作戕況,這些異常記錄所記錄的時間為 RTC 的時間.

MCH Digita	NCH Digital Control Power Board v1.23								
通訊	通訊設定 工程模式 異常記錄								
顯示頁	顯示頁面 設定頁面 歴史紀錄								
Item	時間 RTC	異常代碼	異常命令說明						
70	2019/10/22 18:22:06	0x81	第一組電壓過低						
71	2019/10/22 18:22:06	0x83	第二組電壓過低						
86	2019/10/22 18:22:06	0x85	第三組電壓過低						
84	2019/10/22 18:22:06	0x81	第一組電壓過低						
85	2019/10/22 18:22:06	0x83	第二組電壓過低						
72	2019/10/22 18:22:06	0x85	第三組電壓過低						
83	2019/10/22 18:22:02	0x81	第一組電壓過低						
81	2019/10/22 18:22:02	0x83	第二組電壓過低						
82	2019/10/22 18:22:02	0x85	第三組電壓過低						
69	2019/10/22 18:22:02	0x81	第一組電壓過低						
68	2019/10/22 18:22:02	0x85	第三組電壓過低						
67	2019/10/22 18:22:02	0x83	第二組電壓過低						
66	2019/10/22 18:21:27	0x8C	第三組Break Error						
65	2019/10/22 18:21:27	0x8B	第二組Break Error						
64	2019/10/22 18:21:27	0x8A	第一組Break Error						

(五)讀取間隔設定

1.PC 端監控軟體與監控器通訊時,PC 端會讀取監控器的測量資料,以 CSV 檔型式存入 Logs 資料夾裡,客戶可設定每一筆資料的讀取間隔時間,如下圖所示,間隔設 2 秒即輸入 2000 (1 秒=1000ms),

接著進入轉換表格設定頁面按下存檔,每一筆資料時間間隔即設為2秒.

			.023.csv [唯讀]	工具(T) 資料(I	\\ #8⊄5\\\\\ 88¢	月(H)					_	_	輸入需要解答	5-65-8886	· · ·
檔案(P) 組 細明體	単本社 (下)	檢視(₹)	插入① 格式②			_	a- A III						制八需女件で	3.0 N 6122	·
		- 12			\$ % • .00 ÷.		· 💸 · 🗛 · 📙								
L14	Α	-	f ≽ B	С	D	Е	F	G	PT100	РСВА	I	K	I.	М	N
Date/Time			_	Voltage2(V)	Voltage3(V)	Current1(A)	Current2(A)	Current3(A)	Temp1(deg)	Temp2(deg)	,	1,		171	14
2019/10/2	23 10:1	10:33	93.46600342	96.66600037	92.66600037	0.023	0.187000006	0.187000006	27.43400002						
2019/10/2			93.59999847	96.93299866	92.66600037	0.023	0.187000006	0.187000006	27.43400002	33.54100037					
2019/10/2			93.59999847	96.80000305	92.53299713	0.023	0.187000006	0.187000006	27.43400002	33.54100037					
2019/10/2	23_10:1	10:39	93.59999847	96.80000305	92.53299713	0.023	0.187000006	0.187000006	27.43400002	33.54100037					
2019/10/2			93.73300171	96.93299866	92.93299866	0.011	0.187000006	0.187000006	27.43400002	33.54100037					
2019/10/2	23_10:1	10:43	93.59999847	96.53299713	92.66600037	0.023	0.187000006	0.187000006	27.43400002	33.64500046					
2019/10/2	23_10:1	10:45	93.33300018	96.66600037	92.53299713	0.023	0.187000006	0.187000006	27.43400002	33.54100037					
2019/10/2	23_10:1	10:48	93.33300018	96.53299713	92.66600037	0.023	0.187000006	0.174999997	27.43400002	33.54100037					
2019/10/2	23_10:1	10:50	93.33300018	96.53299713	92.53299713	0.023	0.187000006	0.187000006	27.43400002	33.54100037					
2019/10/2	23_10:1	10:52	93.33300018	96.13300323	92.13300323	0.011	0.187000006	0.187000006	27.32299995	33.64500046					
2019/10/2	23_10:1	10:54	93.46600342	96.53299713	92.40000153	0.023	0.187000006	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	10:56	93.46600342	96.53299713	92.40000153	0.023	0.187000006	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	10:58	93.59999847	96.80000305	92.80000305	0.023	0.187000006	0.174999997	27.43400002	33.64500046				1	
2019/10/2	23_10:1	11:00	93.06600189	96.26599884	92.26599884	0.023	0.187000006	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:02	93.33300018	96.53299713	92.26599884	0.023	0.187000006	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:04	93.33300018	96.40000153	92.40000153	0.023	0.174999997	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:06	93.19999695	96.40000153	92.26599884	0.023	0.174999997	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:08	93.19999695	96.26599884	92.26599884	0.023	0.174999997	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:10	93.06600189	96.13300323	92.26599884	0.023	0.174999997	0.174999997	27.43400002	33.75					
2019/10/2	23_10:1	11:12	92.93299866	96.26599884	92.26599884	0.011	0.174999997	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:14	93.06600189	96.26599884	92.13300323	0.023	0.174999997	0.174999997	27.43400002	33.75					
2019/10/2	23_10:1	11:16	93.06600189	96.26599884	92.13300323	0.023	0.174999997	0.174999997	27.43400002	33.64500046					
2019/10/2	23_10:1	11:18	93.19999695	96.26599884	92.26599884	0.023	0.174999997	0.174999997	27.43400002	33.75					
2019/10/2	23_10:1	11:20	93.33300018	96.53299713	92.40000153	0.023	0.174999997	0.174999997	27.43400002	33.75					
2019/10/2			93.33300018	96.53299713	92.40000153	0.023	0.174999997	0.174999997	27.43400002	33.75					
► H (Pos	er 2019	11025/	02.46600240	00 0000000	00 ///00035	^ ^^	A 174000007	A 174000007	74240000	22.00	III.				
	.w_cv12								1,		- 0,0				

2. PC 端監控軟體固定儲存一天讀取的數據, 存成一個 CSV 檔, 若以設定 1 秒記錄一次數值, 則一天 24 小時的記錄檔案大小約為 10MB, 可記錄的天數, 視用戶 PC 端的硬碟儲存空間而定,如下圖所示.

Power_20191007.csv Power_20191008.csv Power_20191014.csv Power_20191015.csv Power_20191016.csv

3. 每次開啟 PC 端監控軟體,若 CSV 檔已有數據資料,軟體會先空一列再記錄下一筆資料,如下圖所示

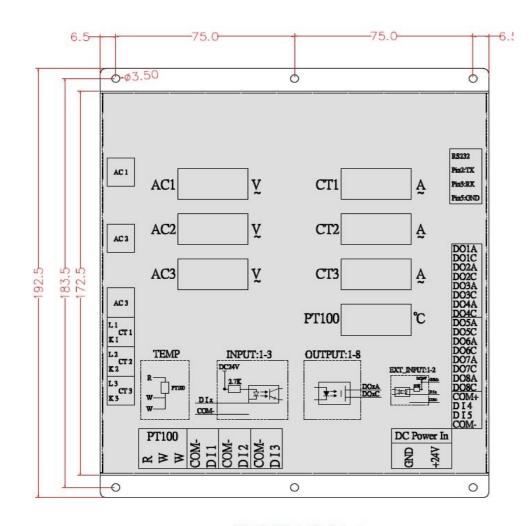
954	2019/10/23_10:23:03	94.266	97.6	93.733	0.011	0.163	0.152	27.434	35.416	
955	2019/10/23_10:23:05	94.133	97.466	93.6	0.023	0.152	0.163	27.434	35.416	
956	2019/10/23_10:23:07	94.133	97.466	93.6	0.023	0.152	0.163	27.434	35.416	
957	2019/10/23_10:23:10	94.4	97.733	93.466	0.011	0.152	0.152	27.434	35.416	
958	2019/10/23_10:23:12	94.666	97.733	93.733	0.023	0.163	0.152	27.434	35.416	
959										
960	2019/10/23_10:23:18	0	0	0	0	0	0	0	0	
961	2019/10/23_10:23:20	94.266	97.6	93.6	0.023	0.152	0.152	27.434	35.416	
962	2019/10/23_10:23:22	94	97.333	93.466	0.023	0.163	0.175	27.434	35.416	
963	2019/10/23_10:23:24	94.933	98	93.866	0.023	0.152	0.152	27.434	35.416	
964										

(六)數據曲線圖

監控軟體具有即时圖示功能,將即時的監控數據轉變成曲線圖 欲開啟此功能需進入"通訊設定->Show Graphics",如下圖所示,客戶可在此頁面觀察最即時的電壓、電流、溫度的變化.

橫軸為資料筆數, 以最新的 199 筆/399 筆資料顯示, 不可改變顯示資料筆數.

縱軸為電壓、電流、溫度的即時量測數值.



資料筆數 199/399 筆,右側為最 新量測資料,依次向左側推進

(七) 內建 3 個 Input / 8 個 Output 應用方法

3 個 Input 可以接開關類 或 旋鈕類元件	VAT-7750 電壓	8個 Output 可以接液壓元件 或 氣動元件 (可外接電磁閥或電磁接觸器 轉換合適電壓值)					
Relay 繼電器 B 接點		DC24V/ 0.6A 警示燈					
過載電譯 B 接點	電流	DC24V/ 0.6A 蜂鳴器					
溫度開關 B 接點		DC24V/ 0.6A Relay 繼電器 rated coil					
壓力開關 B 接點	温度	DC24V/ 0.6A 電磁閥 rated coil					
液位開關 B 接點	監控器	Breaker 輸入					
近接開關 B 接點	血红柏	送停機訊號給其他設備					
極限開關 B 接點		送出過電壓電流訊號給其他設備					
開關門Sensor	內建	氣壓閥 (送出液態氮冷卻)					
人員進出偵測器	3個 Input						
Breaker 輸出	_						
其他系統的過電壓電流訊號	8個 Output						
	1. 電壓 (1) 異常燈號						
	2. 電流 (1) 異常燈號						
	3. 電壓 (2) 異常燈號						
8個 Output 預設定義:	4. 電流 (2) 異常燈號						
Sin Output 換設定義:	5. 電壓 (3) 異常燈號						
	6. 電流 (3) 異常燈號						
	7. Normal 時 ON /Error 時	OFF: 可接 三色指示燈					
	8. Normal 時 OFF /Error 時 OFF : 可接警報蜂鳴器						

(八) 安裝尺寸及配件

監控器安裝尺寸

每台 VAT-7750 監控器, 標準配件:

[1]. VAT-7750 監控器一台

[2]. 扣式比流器 3 組

[3]. PT 100 溫度感測線 1條

[4]. RS232 轉 USB 線材

感謝選用本公司監控器產品.

若有任何使用上的問題,

歡迎來電本公司洽詢.

TEL: (03)280 7733

0986 779 179

grace@mochitech.com

規格若有變動,以實際產品為主.